In the absence of an electric field, free electrons in a gas will move
with a random thermal velocity of average magnitude .
Because the motion is random, the net drift velocity
, where the angle brackets and subscript
denote a time average. If an electric field
is applied, the
electrons will acquire a net drift velocity
along the
electric field lines but in the opposite direction to
.
is directly related to
by:
where is the mobility of electrons.
Electron mobility is a function of both the gas composition and density. It is also dependent on the magnitude of the applied electric field divided by the gas density (see Section 2.4.2). Electron mobility is defined by the following relationship:
where is the electronic charge,
is the electron
mass, and
is the effective collision frequency of electrons
with neutral molecules and atoms. A similar relation also applies for
ions, though ion mobility will be very much less than that of
electrons since
.
The effective collision frequency is proportional to the
number density of gas molecules (
), the thermal velocity of the
electrons (
), and the scattering cross section (
)
of the gas:
A rigorous relationship between the above quantities would include the mean scattering angle.